Chapter 13: Vectors Functions

13.1: Vector Functions and Space Curves

Parametric Equations in \mathbf{R}^{2}
Graph: $\left\{\begin{array}{l}x=2 \sin t \\ y=\cos t\end{array} \Rightarrow\right.$ Eliminate the parameter

Alternatively, can use info from $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ graphs.

Written in vector form: $\vec{r}(t)=\langle 2 \sin t, \cos t\rangle$. We define this as a \qquad and think of the graph as being traced out by \qquad

Parametric Equations in R^{3}

Here we consider parametric equations and vector functions in R^{3}. A curve in R^{3}, "space curve" can be expressed parametrically
$\left\{\begin{array}{l}x=f(t) \\ y=g(t) \\ z=h(t)\end{array}\right.$ or as a vector valued function of the form $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$
See animation of 5C page https://www.geogebra.org/m/RtISr7GW\#material/Tsbi3UY9

Sketching Space Curves

FIGURE 1

C is traced out by the tip of a moving position vector $\mathbf{r}(t)$.

Example: $\vec{r}(t)=\langle\cos (t), \sin (t), t\rangle$

Example: $\vec{r}(t)=\left\langle\cos (t), \sin (t), e^{t}\right\rangle$

Example: $\vec{r}(t)=\langle\sin (t), \cos (t), t\rangle$

When graphing space curves, you will be required to show
\qquad and to clearly show
\qquad

Example: $\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$

Example: $\vec{r}(t)=\langle\cos t, \cos t, \sqrt{2} \sin t\rangle$

Parameterizing a surface

Find the vector valued function to represent the curve of intersection of $x^{2}+y^{2}=4$ and $z=x y$

Further study of Vector Valued Functions

Domain:

Limit:

Continuity:

13.2: Derivatives and Integrals of Vector Valued Functions

Derivatives

Recall: $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad$ Similarly we will define $\vec{r}^{\prime}(t)=\frac{d \vec{r}}{d t}=\lim _{\Delta t \rightarrow 0}$

How do we compute this and what does it give us geometrically?
$\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$ then $\vec{r}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\langle f(t+\Delta t), g(t+\Delta t), h(t+\Delta t)\rangle-\langle f(t), g(t), h(t)\rangle}{\Delta t}=$

Example: If $\vec{r}(t)=\left\langle\cos t, \ln t, t^{3}\right\rangle$, find $\vec{r}^{\prime}(t)$

Geometric Meaning of $\underline{\vec{r}^{\prime}(t)}$

$$
\Delta t>0
$$

$$
\Delta t<0
$$

So $\vec{r}^{\prime}(t)$ is \qquad to the curve C at the tip of $\vec{r}(t)$ and in the direction of \qquad
Tangent vector fails to exist at t_{0} if (1) $\vec{r}^{\prime}\left(t_{0}\right)$ fails to exist or (2) $\vec{r}^{\prime}\left(t_{0}\right)=\overrightarrow{0}$. C is called \qquad if $\vec{r}^{\prime}(t)$ is continuous and if $\vec{r}^{\prime}(t) \neq \overrightarrow{0}$. We are often asked to find the unit tangent vector, $\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$

Example: Find equations of the line tangent to $\vec{r}(t)=\langle\cos (t), \sin (t), t\rangle$ at $t=\pi / 6$.

Integrals

We define the definite integral of a vector valued function as

$$
\int_{a}^{b} \mathbf{r}(t) d t=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathbf{r}\left(t_{i}^{*}\right) \Delta t
$$

Which leads to computation

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} h(t) d t\right) \mathbf{k}
$$

Example-Indefinite Integral : Compute $\int \vec{r}(t) d t$, for $\vec{r}(t)=\langle\cos (t), \sin (t), t\rangle$

EXAMPLE 6 A projectile is fired with muzzle speed $150 \mathrm{~m} / \mathrm{s}$ and angle of elevation 45° from a position 10 m above ground level. Where does the projectile hit the ground, and with what speed?

